Articles | Volume 9, issue 5
https://doi.org/10.5194/jbji-9-249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/jbji-9-249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the potential of naturally occurring antimicrobials for managing orthopedic-device-related infections
Baixing Chen
Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
Department of Development and Regeneration, KU Leuven, Leuven, Belgium
T. Fintan Moriarty
AO Research Institute Davos, Davos, Switzerland
Hans Steenackers
Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
Georges F. Vles
Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
Jolien Onsea
Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
Department of Development and Regeneration, KU Leuven, Leuven, Belgium
Thijs Vackier
Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
Isabel Spriet
Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
Rob Lavigne
Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
R. Geoff Richards
AO Research Institute Davos, Davos, Switzerland
Willem-Jan Metsemakers
CORRESPONDING AUTHOR
Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
Department of Development and Regeneration, KU Leuven, Leuven, Belgium
Related authors
No articles found.
Alexandra Wallimann, Yvonne Achermann, Ciara Ferris, Mario Morgenstern, Martin Clauss, Vincent Stadelmann, Hannes Andreas Rüdiger, Liam O'Mahony, and Thomas Fintan Moriarty
J. Bone Joint Infect., 9, 191–196, https://doi.org/10.5194/jbji-9-191-2024, https://doi.org/10.5194/jbji-9-191-2024, 2024
Short summary
Short summary
Skin commensal bacteria such as staphylococci are often the source of orthopaedic-device-related infections. Rifampicin is a widely used antibiotic in the treatment of these infections. The results of this study show that oral rifampicin therapy leads to a consistent and persistent induction of resistance in commensal staphylococci on the skin and in the nose for a prolonged time.
Fred Ruythooren, Stijn Ghijselings, Melissa Depypere, Willem-Jan Metsemakers, Liesbet Henckaerts, Nathalie Noppe, and Georges Vles
J. Bone Joint Infect., 9, 167–171, https://doi.org/10.5194/jbji-9-167-2024, https://doi.org/10.5194/jbji-9-167-2024, 2024
Short summary
Short summary
The article examines a unique case of Ureaplasma urealyticum causing osteomyelitis in the greater trochanter of a 26-year-old male treated with ocrelizumab for multiple sclerosis. It emphasizes the necessity of a multidisciplinary approach and advanced PCR diagnostics to manage such rare opportunistic infections effectively, highlighting the challenges faced due to the immunosuppressive nature of monoclonal antibody therapies of this kind.
Jordi Cools, Stijn Ghijselings, Fred Ruythooren, Sander Jentjens, Nathalie Noppe, Willem-Jan Metsemakers, and Georges Vles
J. Bone Joint Infect., 9, 27–35, https://doi.org/10.5194/jbji-9-27-2024, https://doi.org/10.5194/jbji-9-27-2024, 2024
Short summary
Short summary
Septic arthritis (SA) of the native adult hip is a rare orthopaedic emergency. To date, the role of advanced imaging has been confined to supporting or opposing diagnosis; however, implications for surgical decision-making and outcomes have not yet been established. We found that extra-articular abscesses are present in two out of three patients and require varying anatomical approaches. Therefore, we recommend routinely performing advanced imaging in all adults with SA of the native hip joint.
Fred Ruythooren, Stijn Ghijselings, Jordi Cools, Melissa Depypere, Paul De Munter, Willem-Jan Metsemakers, and Georges Vles
J. Bone Joint Infect., 8, 209–218, https://doi.org/10.5194/jbji-8-209-2023, https://doi.org/10.5194/jbji-8-209-2023, 2023
Short summary
Short summary
A total of 41 patients who underwent surgical treatment for septic arthritis (SA) of the native hip were studied. We show that patients with SA of the native hip can be divided in three distinct clinical subgroups based on route of infection. Route of infection is directly related to the chance of femoral head preservation and should, therefore, be the basis for decision-making. Only patients with blood-borne infections in an undamaged hip had a reasonable chance of femoral head preservation.
Niels Vanvelk, Esther M. M. Van Lieshout, Jolien Onsea, Jonathan Sliepen, Geertje Govaert, Frank F. A. IJpma, Melissa Depypere, Jamie Ferguson, Martin McNally, William T. Obremskey, Charalampos Zalavras, Michael H. J. Verhofstad, and Willem-Jan Metsemakers
J. Bone Joint Infect., 8, 133–142, https://doi.org/10.5194/jbji-8-133-2023, https://doi.org/10.5194/jbji-8-133-2023, 2023
Short summary
Short summary
This international retrospective cohort study displays the diagnostic characteristics of 609 patients who were treated for fracture-related infection (FRI). Clinical confirmatory criteria were present in 77% of patients. In the remaining patients, the decision to operatively collect deep tissue cultures had to be based on a set of suggestive criteria. The combined use of these suggestive criteria should guide treating physicians in the management pathway of FRI.
Cited articles
Abedon, S. T., Kuhl, S. J., Blasdel, B. G., and Kutter, E. M.: Phage treatment of human infections, Bacteriophage, 1, 66–85, https://doi.org/10.4161/bact.1.2.15845, 2011.
Acs, N., Gambino, M., and Brondsted, L.: Bacteriophage Enumeration and Detection Methods, Front. Microbiol., 11, 594868, https://doi.org/10.3389/fmicb.2020.594868, 2020.
Akita, S., Namiki, T., Kawasaki, Y., Rikihisa, N., Ogata, H., Tokumoto, H., Tezuka, T., Kubota, Y., Kuriyama, M., Nakamura, M., and Mitsukawa, N.: The beneficial effect of traditional Japanese herbal (Kampo) medicine, Hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang), for patients with chronic wounds refractory to conventional therapies: A prospective, randomized trial, Wound Repair Regen., 27, 672–679, https://doi.org/10.1111/wrr.12753, 2019.
Aunon, A., Tovar-Bazaga, M., Blanco-Garcia, A., Garcia-Canete, J., Parron, R., and Esteban, J.: Does a New Antibiotic Scheme Improve the Outcome of Staphylococcus aureus-Caused Acute Prosthetic Joint Infections (PJI) Treated with Debridement, Antibiotics and Implant Retention (DAIR)?, Antibiotics (Basel), 11, 922, https://doi.org/10.3390/antibiotics11070922, 2022.
Benito, N., Franco, M., Ribera, A., Soriano, A., Rodriguez-Pardo, D., Sorli, L., Fresco, G., Fernandez-Sampedro, M., Dolores Del Toro, M., Guio, L., Sanchez-Rivas, E., Bahamonde, A., Riera, M., Esteban, J., Baraia-Etxaburu, J. M., Martinez-Alvarez, J., Jover-Saenz, A., Duenas, C., Ramos, A., Sobrino, B., Euba, G., Morata, L., Pigrau, C., Coll, P., Mur, I., Ariza, J., and the REIPI (Spanish Network for Research in Infectious Disease) Group for the Study of Prosthetic Joint Infections: Time trends in the aetiology of prosthetic joint infections: a multicentre cohort study, Clin. Microbiol. Infect., 22, 732 e731–738, https://doi.org/10.1016/j.cmi.2016.05.004, 2016.
Bisht, N., Dwivedi, N., Kumar, P., Venkatesh, M., Yadav, A. K., Mishra, D., Solanki, P., Verma, N. K., Lakshminarayanan, R., Ramakrishna, S., Mondal, D. P., Srivastava, A. K., and Dhand, C.: Recent advances in copper and copper-derived materials for antimicrobial resistance and infection control, Curr. Opin. Biomed. Eng., 24, 100408, https://doi.org/10.1016/j.cobme.2022.100408, 2022.
Bessems, L., Chen, B., Uyttebroek, S., Devolder, D., Lood, C., Verwimp, S., De Munter, P., Debaveye, Y., Depypere, M., Spriet, I., Van Gerven, L., Dupont, L., Wagemans, J., van Noort, V., Lavigne, R., Metsemakers, W. J., and Onsea, J.: Optimization of bacteriophage therapy for difficult-to-treat musculoskeletal infections: a bench-to-bedside perspective, Front. Cell. Infect. Microbiol., 14, 1434397, https://doi.org/10.3389/fcimb.2024.1434397, 2024.
Butler, M. S. and Paterson, D. L.: Antibiotics in the clinical pipeline in October 2019, J. Antibiot. (Tokyo), 73, 329–364, https://doi.org/10.1038/s41429-020-0291-8, 2020.
Cai, Y., Zhang, Q., Fu, Y., Li, L., Zhao, N., Lu, A., Liu, Q., and Jiang, M.: Effectiveness of Chinese Herbal Medicine Combined with Antibiotics for Extensively Drug-Resistant Enterobacteria and Nonfermentative Bacteria Infection: Real-Life Experience in a Retrospective Cohort, Biomed. Res. Int., 2017, 2897045, https://doi.org/10.1155/2017/2897045, 2017.
Campoccia, D., Montanaro, L., and Arciola, C. R.: The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, 27, 2331–2339, https://doi.org/10.1016/j.biomaterials.2005.11.044, 2006.
Chan, B. K., Sistrom, M., Wertz, J. E., Kortright, K. E., Narayan, D., and Turner, P. E.: Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa, Sci. Rep., 6, 26717, https://doi.org/10.1038/srep26717, 2016.
Chen, B., Benavente, L. P., Chitto, M., Wychowaniec, J. K., Post, V., D'Este, M., Constant, C., Zeiter, S., Feng, W., Moreno, M. G., Trampuz, A., Wagemans, J., Onsea, J., Richards, R. G., Lavigne, R., Moriarty, T. F., and Metsemakers, W. J.: Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections, J. Control. Release, https://doi.org/10.1016/j.jconrel.2023.10.029, 2023.
Comeau, A. M., Tetart, F., Trojet, S. N., Prere, M. F., and Krisch, H. M.: Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth, PLoS One, 2, e799, https://doi.org/10.1371/journal.pone.0000799, 2007.
Coppola, G. A., Onsea, J., Moriarty, T. F., Nehrbass, D., Constant, C., Zeiter, S., Aktan, M. K., Braem, A., Van der Eycken, E. V., Steenackers, H. P., and Metsemakers, W. J.: An Improved 2-Aminoimidazole Based Anti-Biofilm Coating for Orthopedic Implants: Activity, Stability, and in vivo Biocompatibility, Front. Microbiol., 12, 658521, https://doi.org/10.3389/fmicb.2021.658521, 2021.
Dabrowska, K.: Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review, Med. Res. Rev., 39, 2000–2025, https://doi.org/10.1002/med.21572, 2019.
Depypere, M., Kuehl, R., Metsemakers, W. J., Senneville, E., McNally, M. A., Obremskey, W. T., Zimmerli, W., Atkins, B. L., Trampuz, A., and Fracture-Related Infection Consensus, G.: Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group, J. Orthop. Trauma, 34, 30–41, https://doi.org/10.1097/BOT.0000000000001626, 2020.
Diallo, K. and Dublanchet, A.: Benefits of Combined Phage-Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review, Antibiotics (Basel), 11, 839, https://doi.org/10.3390/antibiotics11070839, 2022.
Dieltjens, L., Appermans, K., Lissens, M., Lories, B., Kim, W., Van der Eycken, E. V., Foster, K. R., and Steenackers, H. P.: Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy, Nat. Commun., 11, 107, https://doi.org/10.1038/s41467-019-13660-x, 2020.
Drulis-Kawa, Z., Majkowska-Skrobek, G., and Maciejewska, B.: Bacteriophages and phage-derived proteins–application approaches, Curr. Med. Chem., 22, 1757–1773, https://doi.org/10.2174/0929867322666150209152851, 2015.
Ebada, S. S., Lin, W., and Proksch, P.: Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance, Mar. Drugs, 8, 313–346, https://doi.org/10.3390/md8020313, 2010.
Ferry, T., Batailler, C., Souche, A., Cassino, C., Chidiac, C., Perpoint, T., le Corvaisier, C., Josse, J., Gaillard, R., Roger, J., Kolenda, C., Lustig, S., Laurent, F., and Lyon, B. J. I. S. G.: Arthroscopic “Debridement and Implant Retention” With Local Administration of Exebacase (Lysin CF-301) Followed by Suppressive Tedizolid as Salvage Therapy in Elderly Patients for Relapsing Multidrug-Resistant S. epidermidis Prosthetic Knee Infection, Front. Med. (Lausanne), 8, 550853, https://doi.org/10.3389/fmed.2021.550853, 2021.
Gerstmans, H., Duyvejonck, L., Vazquez, R., Staes, I., Borloo, J., Abdelkader, K., Leroy, J., Cremelie, E., Gutierrez, D., Tames-Caunedo, H., Ruas-Madiedo, P., Rodriguez, A., Aertsen, A., Lammertyn, J., Lavigne, R., and Briers, Y.: Distinct mode of action of a highly stable, engineered phage lysin killing Gram-negative bacteria, Microbiol. Spectr., 11, e0181323, https://doi.org/10.1128/spectrum.01813-23, 2023.
Giannitsioti, E., Salles, M. J., Mavrogenis, A., Rodriguez-Pardo, D., Los-Arcos, I., Ribera, A., Ariza, J., del Toro, M. D., Nguyen, S., Senneville, E., Bonnet, E., Chan, M., Pasticci, M. B., Petersdorf, S., Benito, N., O' Connell, N., Blanco García, A., Skaliczki, G., Tattevin, P., Kocak Tufan, Z., Pantazis, N., Megaloikonomos, P. D., Papagelopoulos, P., Soriano, A., Papadopoulos, A., and the ESGIAI collaborators study group: Osteosynthesis-associated infection of the lower limbs by multidrug-resistant and extensively drug-resistant Gram-negative bacteria: a multicentre cohort study, J. Bone Joint Infect., 7, 279–288, https://doi.org/10.5194/jbji-7-279-2022, 2022.
Gomes, D., Santos, R., Soares, R. S., Reis, S., Carvalho, S., Rego, P., M, C. P., Tavares, L., and Oliveira, M.: Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections, Antibiotics (Basel), 9, 128, https://doi.org/10.3390/antibiotics9030128, 2020.
Hofstee, M. I., Riool, M., Gieling, F., Stenger, V., Constant, C., Nehrbass, D., Zeiter, S., Richards, R. G., Zaat, S. A., and Moriarty, T. F.: A murine Staphylococcus aureus fracture-related infection model characterised by fracture non-union, staphylococcal abscess communities and myeloid-derived suppressor cells, Eur. Cell. Mater., 41, 774–792, https://doi.org/10.22203/eCM.v041a49, 2021.
Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O.: Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents, 35, 322–332, https://doi.org/10.1016/j.ijantimicag.2009.12.011, 2010.
Imamovic, L. and Sommer, M. O.: Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development, Sci. Transl. Med., 5, 204ra132, https://doi.org/10.1126/scitranslmed.3006609, 2013.
Intron Biotechnology, I.: Phase IIa Clinical Study of N-Rephasin® SAL200, 2019.
Jamei, O., Gjoni, S., Zenelaj, B., Kressmann, B., Belaieff, W., Hannouche, D., and Uçkay, I.: Which Orthopaedic Patients Are Infected with Gram-negative Non-fermenting Rods?, J. Bone Joint Infect., 2, 73–76, https://doi.org/10.7150/jbji.17171, 2017.
Johnson, C. T., Sok, M. C. P., Martin, K. E., Kalelkar, P. P., Caplin, J. D., Botchwey, E. A., and Garcia, A. J.: Lysostaphin and BMP-2 co-delivery reduces S. aureus infection and regenerates critical-sized segmental bone defects, Sci. Adv., 5, eaaw1228, https://doi.org/10.1126/sciadv.aaw1228, 2019.
Kamal, F. and Dennis, J. J.: Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity, Appl. Environ. Microbiol., 81, 1132–1138, https://doi.org/10.1128/AEM.02850-14, 2015.
Karau, M., Schmidt-Malan, S., Mandrekar, J., Lehoux, D., Schuch, R., Cassino, C., and Patel, R.: Locally delivered antistaphylococcal lysin exebacase or CF-296 is active in methicillin-resistant Staphylococcus aureus implant-associated osteomyelitis, J. Bone Joint Infect., 7, 169–175, https://doi.org/10.5194/jbji-7-169-2022, 2022.
Kohno, J., Kawamura, T., Kikuchi, A., Akaishi, T., Takayama, S., and Ishii, T.: A Japanese traditional medicine Hochuekkito promotes negative conversion of vancomycin-resistant Enterococci, Sci. Rep.-UK, 11, 11300, https://doi.org/10.1038/s41598-021-90890-4, 2021.
Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., and Johnson, R. P.: Enumeration of bacteriophages by double agar overlay plaque assay, Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions, Humana Press, 501, 69–76, 2009.
Kumaran, D., Taha, M., Yi, Q., Ramirez-Arcos, S., Diallo, J. S., Carli, A., and Abdelbary, H.: Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus aureus Biofilms, Front. Microbiol., 9, 127, https://doi.org/10.3389/fmicb.2018.00127, 2018.
Lora-Tamayo, J., Murillo, O., Iribarren, J. A., et al.: A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention, Clin. Infect. Dis., 56, 182–194, https://doi.org/10.1093/cid/cis746, 2013.
Lusiak-Szelachowska, M., Zaczek, M., Weber-Dabrowska, B., Miedzybrodzki, R., Letkiewicz, S., Fortuna, W., Rogoz, P., Szufnarowski, K., Jonczyk-Matysiak, E., Olchawa, E., Walaszek, K. M., and Gorski, A.: Antiphage activity of sera during phage therapy in relation to its outcome, Future Microbiol., 12, 109–117, https://doi.org/10.2217/fmb-2016-0156, 2017.
Lusiak-Szelachowska, M., Miedzybrodzki, R., Drulis-Kawa, Z., Cater, K., Knezevic, P., Winogradow, C., Amaro, K., Jonczyk-Matysiak, E., Weber-Dabrowska, B., Rekas, J., and Gorski, A.: Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far, J. Biomed. Sci., 29, 23, https://doi.org/10.1186/s12929-022-00806-1, 2022.
Malekian, A., Esmaeeli Djavid, G., Akbarzadeh, K., Soltandallal, M., Rassi, Y., Rafinejad, J., Rahimi Foroushani, A., Farhoud, A., Bakhtiary, R., and Totonchi, M.: Efficacy of Maggot Therapy on Staphylococcus aureus and Pseudomonas aeruginosa in Diabetic Foot Ulcers: A Randomized Controlled Trial, J. Wound Ostomy Continence Nurs., 46, 25–29, https://doi.org/10.1097/WON.0000000000000496, 2019.
Mapook, A., Hyde, K. D., Hassan, K., Kemkuignou, B. M., Cmokova, A., Surup, F., Kuhnert, E., Paomephan, P., Cheng, T., de Hoog, S., Song, Y., Jayawardena, R. S., Al-Hatmi, A. M. S., Mahmoudi, T., Ponts, N., Studt-Reinhold, L., Richard-Forget, F., Chethana, K. W. T., Harishchandra, D. L., Mortimer, P. E., Li, H., Lumyong, S., Aiduang, W., Kumla, J., Suwannarach, N., Bhunjun, C. S., Yu, F. M., Zhao, Q., Schaefer, D., and Stadler, M.: Ten decadal advances in fungal biology leading towards human well-being, Fungal Divers., 116, 547–614, https://doi.org/10.1007/s13225-022-00510-3, 2022.
McNally, M., Corrigan, R., Sliepen, J., Dudareva, M., Rentenaar, R., F, I. J., Atkins, B. L., Wouthuyzen-Bakker, M., and Govaert, G.: What Factors Affect Outcome in the Treatment of Fracture-Related Infection?, Antibiotics (Basel), 11, 946, https://doi.org/10.3390/antibiotics11070946, 2022.
Mijnendonckx, K., Leys, N., Mahillon, J., Silver, S., and Van Houdt, R.: Antimicrobial silver: uses, toxicity and potential for resistance, Biometals, 26, 609–621, https://doi.org/10.1007/s10534-013-9645-z, 2013.
Mohd Zubir, M. Z., Holloway, S., and Mohd Noor, N.: Maggot Therapy in Wound Healing: A Systematic Review, Int. J. Environ. Res. Public Health, 17, 6103, https://doi.org/10.3390/ijerph17176103, 2020.
Moriarty, T. F., Zaat, S. A., and Busscher, H. J.: Biomaterials associated infection: immunological aspects and antimicrobial strategies, Springer Science & Business Media, Springer New York, NY, 3–24, https://doi.org/10.1007/978-1-4614-1031-7, 2012.
Moriarty, T. F., Kuehl, R., Coenye, T., Metsemakers, W. J., Morgenstern, M., Schwarz, E. M., Riool, M., Zaat, S. A. J., Khana, N., Kates, S. L., and Richards, R. G.: Orthopaedic device-related infection: current and future interventions for improved prevention and treatment, EFORT Open Rev., 1, 89–99, https://doi.org/10.1302/2058-5241.1.000037, 2016.
Moriarty, T. F., Metsemakers, W. J., Morgenstern, M., Hofstee, M. I., Vallejo Diaz, A., Cassat, J. E., Wildemann, B., Depypere, M., Schwarz, E. M., and Richards, R. G.: Fracture-related infection, Nat. Rev. Dis. Primers, 8, 67, https://doi.org/10.1038/s41572-022-00396-0, 2022.
Oechslin, F.: Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy, Viruses, 10, 351, https://doi.org/10.3390/v10070351, 2018.
Onsea, J., Uyttebroek, S., Chen, B., Wagemans, J., Lood, C., Van Gerven, L., Spriet, I., Devolder, D., Debaveye, Y., Depypere, M., Dupont, L., De Munter, P., Peetermans, W. E., van Noort, V., Merabishvili, M., Pirnay, J. P., Lavigne, R., and Metsemakers, W. J.: Bacteriophage Therapy for Difficult-to-Treat Infections: The Implementation of a Multidisciplinary Phage Task Force (The PHAGEFORCE Study Protocol), Viruses, 13, 1543, https://doi.org/10.3390/v13081543, 2021.
Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., and Cheng, Z.: Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies, Biotechnol. Adv., 37, 177–192, https://doi.org/10.1016/j.biotechadv.2018.11.013, 2019.
Patel, I., Nham, F., Zalikha, A. K., and El-Othmani, M. M.: Epidemiology of total hip arthroplasty: demographics, comorbidities and outcomes, Arthroplasty, 5, 2, https://doi.org/10.1186/s42836-022-00156-1, 2023.
Ramesh, N., Manohar, P., Eniyan, K., Archana, L., Athira, S., Loh, B., Ma, L., and Leptihn, S.: A Lysozyme Murein Hydrolase with Broad-Spectrum Antibacterial Activity from Enterobacter Phage myPSH1140, Antimicrob. Agents Chemother., 66, e0050622, https://doi.org/10.1128/aac.00506-22, 2022.
Savvidou, O. D., Kaspiris, A., Trikoupis, I., Kakouratos, G., Goumenos, S., Melissaridou, D., and Papagelopoulos, P. J.: Efficacy of antimicrobial coated orthopaedic implants on the prevention of periprosthetic infections: a systematic review and meta-analysis, J. Bone Joint Infect., 5, 212–222, https://doi.org/10.7150/jbji.44839, 2020.
Sendi, P. and Ferry, T.: Lysins – a new armamentarium for the treatment of bone and joint infections?, J. Bone Joint Infect., 7, 187–189, https://doi.org/10.5194/jbji-7-187-2022, 2022.
Seukep, A. J., Kuete, V., Nahar, L., Sarker, S. D., and Guo, M.: Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification, J. Pharm. Anal., 10, 277–290, https://doi.org/10.1016/j.jpha.2019.11.002, 2020.
Shariati, A., Dadashi, M., Moghadam, M. T., van Belkum, A., Yaslianifard, S., and Darban-Sarokhalil, D.: Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis, Sci. Rep., 10, 12689, https://doi.org/10.1038/s41598-020-69058-z, 2020.
Shariati, A., Arshadi, M., Khosrojerdi, M. A., Abedinzadeh, M., Ganjalishahi, M., Maleki, A., Heidary, M., and Khoshnood, S.: The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic, Front. Public Health, 10, 1025633, https://doi.org/10.3389/fpubh.2022.1025633, 2022.
Subramani, R., Narayanasamy, M., and Feussner, K. D.: Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens, Biotech., 7, 172, https://doi.org/10.1007/s13205-017-0848-9, 2017.
Thieme, L., Hartung, A., Tramm, K., Klinger-Strobel, M., Jandt, K. D., Makarewicz, O., and Pletz, M. W.: MBEC Versus MBIC: the Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology, Biol. Proced. Online, 21, 18, https://doi.org/10.1186/s12575-019-0106-0, 2019.
Uyttebroek, S., Chen, B., Onsea, J., Ruythooren, F., Debaveye, Y., Devolder, D., Spriet, I., Depypere, M., Wagemans, J., Lavigne, R., Pirnay, J. P., Merabishvili, M., De Munter, P., Peetermans, W. E., Dupont, L., Van Gerven, L., and Metsemakers, W. J.: Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review, Lancet Infect. Dis., 22, e208–e220, https://doi.org/10.1016/S1473-3099(21)00612-5, 2022.
Veve, M. P. and Wagner, J. L.: Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic, Pharmacotherapy, 38, 935–946, https://doi.org/10.1002/phar.2166, 2018.
Watson, A., Oh, J. T., Sauve, K., Bradford, P. A., Cassino, C., and Schuch, R.: Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis, Antimicrob. Agents Chemother., 63, e01078-19, https://doi.org/10.1128/AAC.01078-19, 2019.
Wieczorek, M., Jenssen, H., Kindrachuk, J., Scott, W. R., Elliott, M., Hilpert, K., Cheng, J. T., Hancock, R. E., and Straus, S. K.: Structural studies of a peptide with immune modulating and direct antimicrobial activity, Chem. Biol., 17, 970–980, https://doi.org/10.1016/j.chembiol.2010.07.007, 2010.
Yokogawa, N., Ishikawa, M., Nishitani, K., Beck, C. A., Tsuchiya, H., Mesfin, A., Kates, S. L., Daiss, J. L., Xie, C., and Schwarz, E. M.: Immunotherapy synergizes with debridement and antibiotic therapy in a murine 1-stage exchange model of MRSA implant-associated osteomyelitis, J. Orthop. Res., 36, 1590–1598, https://doi.org/10.1002/jor.23801, 2018.
Zhai, H., Pan, J., Pang, E., and Bai, B.: Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection, PLoS One, 9, e102760, https://doi.org/10.1371/journal.pone.0102760, 2014.
Zhao, H., Brooks, S. A., Eszterhas, S., Heim, S., Li, L., Xiong, Y. Q., Fang, Y., Kirsch, J. R., Verma, D., Bailey-Kellogg, C., and Griswold, K. E.: Globally deimmunized lysostaphin evades human immune surveillance and enables highly efficacious repeat dosing, Sci. Adv., 6, eabb9011, https://doi.org/10.1126/sciadv.abb9011, 2020.
Zhou, Z., Pan, C., Lu, Y., Gao, Y., Liu, W., Yin, P., and Yu, X.: Combination of Erythromycin and Curcumin Alleviates Staphylococcus aureus Induced Osteomyelitis in Rats, Front. Cell. Infect. Microbiol., 7, 379, https://doi.org/10.3389/fcimb.2017.00379, 2017.
Zimmerli, W. and Sendi, P.: Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections, Antimicrob. Agents Chemother., 63, e01746-18, https://doi.org/10.1128/AAC.01746-18, 2019.
Short summary
Our research explores natural antimicrobials to combat orthopedic-device-related infections, a challenging issue due to antibiotic resistance. We reviewed agents from bacteria, fungi, viruses, animals, plants and minerals, evaluating their effectiveness and synergy with traditional antibiotics. Our findings suggest these natural alternatives could revolutionize infection management in orthopedic patients, offering new hope for reducing antibiotic resistance and improving treatment outcomes.
Our research explores natural antimicrobials to combat orthopedic-device-related infections, a...